Albini, M., Letardi, P., Mathys, L., Brambilla, L., Schröter, J., Junier, P. and Joseph, E., 2018, Comparison of a bio-based corrosion inhibitor versus benzotriazole on corroded copper surfaces. Corrosion Science, 143, 84–92.
Apchain, E., Neff, D., Gallien, J.P., Nuns, N., Berger, P., Noumowé, A. and Dillmann, P., 2021, Efficiency and durability of protective treatments on cultural heritage copper corrosion layers. Corrosion Science, 183, 109319.
Aramendia, J., Gomez-Nubla, L., Castro, K., Martinez-Arkarazo, I., Vega, D., Sanz López de Heredia, A., García Ibáñez de Opakua, A. and Madariaga, J.M., 2012, Portable Raman study on the conservation state of four CorTen steel-based sculptures by Eduardo Chillida impacted by urban atmospheres. Journal of Raman Spectroscopy, 43(8), 1111–1117.
Arli, B.D., Franci, G.S., Kaya, S., Arli, H. and Colomban, P., 2020, Portable X-ray fluorescence (p-XRF) uncertainty estimation for glazed ceramic analysis: Case of Iznik tiles. Heritage, 3(4), 1302–29.
Azéma, A., Angelini, F., Mille, B., Framezelle, G. and Chauveau, D., 2013, Ultrasonic phased array contribution to the knowledge of the flow fusion welding process used to make the Roman large bronze statues. Welding in the World, 57(4), 477–486.
Barat, B.R., Letardi, P. and Cano, E., 2019, An overview of the use of EIS measurements for the assessment of patinas and coatings in the conservation of metallic cultural heritage. In: Metal 2019 Proceedings of the Interim Meeting of the ICOM-CC Metals Working Group; Neuchâtel, September 2-6; 1–9.
Bergamonti, L., Cirlini, M., Graiff, C., Lottic, P.P., Palla, G. and Casoli, A., 2022, Characterization of waxes in the Roman wall paintings of the Herculaneum site (Italy). Applied Sciences, 12(21), 11264.
Bernardi, E., Chiavari, C., Lenza, B., Martini, C., Morselli, L., Ospitali, F. and Robbiola, L., 2009, The atmospheric corrosion of quaternary bronzes: The leaching action of acid rain. Corrosion Science, 51, 162–169.
Catelli, E., Randeberg, L., Strandberg, H., Alsberg, B., Maris, A. and Vikki, L., 2018b, Can hyperspectral imaging be used to map corrosion products on outdoor bronze sculptures? Journal of Spectral Imaging, 7(a10), 1–9.
Catelli, E., Sciutto, G., Prati, S., Chavez Lozano, M.V., Gatti, L., Lugli, F., Silvestrini, S., Benazzi, S., Genorini, E. and Mazzeo, R., 2020, A new miniaturised short-wave infrared (SWIR) spectrometer for on-site cultural heritage investigations. Talanta, 218, 121112.
Catelli, E., Sciutto, G., Prati, S., Jia, Y. and Mazzeo, R., 2018a, Characterization of outdoor bronze monument patinas: The potentialities of near-infrared spectroscopic analysis. Environmental Science and Pollution Research, 25, 24379–93.
Chiavari, C., Bernardi, E., Martini, C., Passarini, F., Ospitali, F. and Robbiola, L., 2010, The atmospheric corrosion of quaternary bronzes: The action of stagnant rain water. Corrosion Science, 52, 3002–3010.
Chiavari, C., Rahmouni, K., Takenouti, H., Joiret, S., Vermaut, P. and Robbiola, L., 2007, Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochimica Acta, 52, 7760–7769.
Colomban, P., Tournié, A., Maucuer, M. and Meynard, P., 2011, On-site Raman and XRF analysis of Japanese/Chinese bronze/brass: The search for specific Raman signatures. Journal of Raman Spectroscopy, 43(6), 799–808.
Considine, B., Wolfe, J., Posner, K. and Bouchard, M., 2010, Conserving Outdoor Sculpture: The Getty Conservation Institute, The Getty Conservation Institute, Los Angeles, 94–95.
English Heritage, 2012, Practical building conservation: Metals, Routledge, London, 298–368.
Fitzgerald, K.P., Nairn, J. and Atrens, A., 1998, The chemistry of copper patination. Corrosion Science, 27, 2029–2032.
Fitzgerald, K.P., Nairn, J. and Atrens, A., 2002, Surface characterization of artificial corrosion layers on copper alloy reference materials. Applied Surface Science, 189, 90–101.
Franceschi, E., Letardi, P. and Luciano, G., 2006, Colour measurements on patinas and coating system for outdoor bronze monuments. Journal of Cultural Heritage, 7, 166–170.
Frost, R.L., 2003, Raman spectroscopy of selected copper minerals of significance in corrosion. Spectrochimica Acta Part A, 59, 1195–1204.
Gatto, V., Anisimov, A.G., Lettinga, W., Tao, N., Lantman, M., Crijns, B. and Groves, R.M., 2021, Application of shearography and the percussion method for the structural inspection of wall paintings: a case study of St. Christopher in Maria Church, Nisse. In: Optics for Arts, Architecture and Archaeology Ⅷ, Online; Jun 21-25; 11784. (in English)
Gianni, L., Adriaens, A., Cavallini, M., Natali, S., Volpe, V. and Zortea, L., 2014, Reflectance curves and CIE L* a* b* parameters to describe patina characteristics and corrosion mechanism on bronze alloys. Color Culture and Science, 38–43.
Giesriegl, A., Pacher, U., Nagy, T., Pichler, B. and Kautek, W., 2023, Laser diagnostics and processing of historical and artificial copper patina. Journal of Cultural Heritage, 62, 45–53.
Goidanich, S., Brunk, J., Herting, G., Arenas, M. and Wallinder, I.O., 2011, Atmospheric corrosion of brass in outdoor applications: patina evolution, metal release and aesthetic appearance at urban exposure conditions. Science of the Total Environment, 412-413, 46–57.
Goidanich, S., Toniolo, L., Jafarzadeh, S. and Wallinder, I.O., 2010, Effects of wax-based anti-graffiti on copper patina composition and dissolution during four years of outdoor urban exposure. Heritage Science, 11, 288–296.
Harding, G. and Harding, E., 2010, Compton scatter imaging: A tool for historical exploration. Applied Radiation and Isotopes, Munich, 68(6), 993–1005.
Hayez, V., Guillaume, J., Hubin, A. and Terryn, H., 2004, Micro-Raman spectroscopy for the study of corrosion products on copper alloys: Setting up of a reference database and studying works of art. Journal of Raman Spectroscopy, 35, 732–738.
Jehlička, J. and Culha, A., 2022, Critical evaluation of portable Raman spectrometers: From rock outcrops and planetary analogs to cultural heritage – A review. Analytica Chimica Acta, 1209, 339027.
Kim, S.J., Kim, S., Lee, J., Jo, Y., Seo, Y.S., Lee, M., Lee, Y., Cho, C.R., Kim, J., Cheon, M., Hwang, J., Kim, Y.I., Kim, Y.H., Kim, Y.M., Soon, A., Choi, M., Choi, W.S., Jeong, S.Y. and Lee, Y.H., 2021, Color of copper/copper oxide. Advanced Materials, 33, 2007345.
Klausmeyer, P., Cushman, M., Dobrev, I., Khaleghi, M. and Furlong, C., 2016, Quantifying and mapping induced strain in canvas paintings uising laser shearography, The noninvasive analysis of painted surfaces: scientific impact and conservation practice. Smithsonian Institution Scholarly Press, Washington D.C, 1–13.
Kwon, H.H. and Cho, N.C., 2023, Corrosion behaviors of outdoor bronze sculptures in an urban–industrial environment: Corrosion experiment on artificial sulfide patina. Metals, 13(6), 1101.
Kwon, H.H. and Cho, N.C., 2024, In-situ non-destructive investigation of contemporary outdoor bronze sculptures. Heritage Science, 12, 167.
Kwon, H.H., 2023, Corrosion Behaviors of Artificial Chloride Patina for Studying Bronze Sculpture Corrosion in Marine Environments. Coatings, 13(9), 1630.(in Korean with English abstract)
Kwon, H.H., Cha, S.M., Shin, J.A., Han, Y.B. and Kim, Y.M., 2023, Conservation processing of modern and contemporary outdoor bronze sculptures. Journal of Conservation Science, 39, 320–37. (in Korean with English abstract)
Lee, S.O., Lee, H.H. and Chung, K.Y., 2023, Bullet-marks investigation of the former provincial government in south Jeolla province using the Non-Destructive Internal Structure Investigation Techniques. In: The 58th Autumn Conference of the Korean Society of Conservation Science for Cultural Heritage, Gongju; November 10-11; 10.(in Korean)
Leygraf, C., Chang, T., Herting, G. and Wallinder, I.O., 2019, The origin and evolution of copper patina colour. Corrosion Science, 157, 337–346.
Masi, G., Esvan, J., Josse, C., Chiavari, C., Bernardi, E., Martini, C., Bignozzi, M.C., Gartner, N., Kosec, T. and Robbiola, L., 2017, Characterization of typical patinas simulating bronze corrosion in outdoor conditions. Materials Chemistry and Physics, 200, 308–321.
Orazi, N., Mercuri, F., Paoloni, S., Zammit, U., Marinelli, M., Scudieri, F., Salerno, C.S. and Giuffredi, A., 2011, Thermographic inspection of historical bronze statues. In: 10th international conference on non-destructive investigations and microanalysis for the diagnostics and conservation of cultural and environmental heritage; Florence. April 13-15.
Papadopoulou, O., Delagrammatikas, M., Vassiliou, P., Grassini, S., Angelini, E. and Gouda, V., 2014, Surface and interface investigation of electrochemically induced corrosion on a quaternary bronze. Surface and Interface Analysis, 46, 771–775.
Petiti, C., Gulotta, D., Marian, B., Toniolo, L. and Goidanich, S., 2020, Optimisation of the setup of LPR and EIS measurements for the onsite, non-invasive study of metallic artefacts. Journal of Solid State Electrochemistry, 24, 3257–3267.
Piccardo, P., Mille, B. and Robbiola, L., 2007, Tin and copper oxides in corroded archaeological bronzes, Corrosion of Metallic Heritage Artefacts, Woodhead Publishing, Sawston, 239–262.
Porcu, D., Innocenti, S., Galeotti, M., Striova, J., Dei, L., Carretti, E. and Fontana, R., 2022, Spectroscopic and morphologic investigation of bronze disease: Performance evaluation of portable devices. Heritage, 5(4), 3548–3561.
Privitera, A., Corbascio, A., Calcani, G., Ventura, G.D., Ricci, M.A. and Sodo, A., 2021, Raman approach to the forensic study of bronze patinas. Journal of Archaeological Science: Reports, 39, 103115.
Robbiola, L., Rahmouni, K., Chiavari, C., Martini, C., Prandstraller, D., Texier, A., Takenouti, H. and Vermaut, P., 2008, New insight into the nature and properties of pale green surfaces of outdoor bronze monuments. Applied Physics A, 92, 161–169.
Robotti, S., Rizzi, P., Soffritti, C., Garagnani, G.L., Greco, C., Facchetti, F., Borla, M., Operti, L. and Agostino, A., 2018, Reliability of portable X-ray fluorescence for the chemical characterisation of ancient corroded copper tin alloys. Spectrochimica Acta Part B, 146.
Rosaki, A. and Vandenabeele, P., 2021, In situ Raman spectroscopy for cultural heritage studies. Journal of Raman Spectroscopy, 52(12), 1–12.
Schiattone, S., Martini, C., Malagodi, M., Fiocco, G., Rocconi, E., Morisco, M. and Chiavari, C., 2024, Metal fragments of Roman pipes from Pompeii: Investigations on copper-based alloys, corrosion products and surface treatments. Heritage, 7(5), 2538–2551.
Sciutto, G., Legrand, S., Catelli, E., Prati, S., Malegori, C., Oliveri, P., Janssens, K. and Mazzeo, R., 2020, Macroscopic mid-FTIR mapping and clustering-based automated data-reduction: An advanced diagnostic tool for in situ investigations of artworks. Talanta, 209, 120575–81.
Scott, D.A., 2002, Copper and bronze in art: Corrosion, colorants and conservation, Getty Publications, Los Angeles, 43-59, 81-99, 122-167.
Sebar, L.E., Iannucci, L., Gori, C., Re, A., Parvis, M., Angelini, E. and Grassini, S., 2021, In-situ multi-analytical study of ongoing corrosion processes on bronze artworks exposed outdoors. ACTA IMEKO, 10(1), 241–249.
Sebar, L.E., Iannucci, L., Grassini, S., Angelini, E., Parvis, M., Antonino, R., Quaranta, G., Giani, C., Boassa, M. and Nicola, M., 2022, Corrosion assessment of a bronze equestrian statue exposed to an urban environment. Koroze a Ochrana Materiálu, 66, 50–55.
Strandberg, H. and Johansson, L.G., 1997, The formation of black patina on copper in humid air containing traces of SO2. Journal of the Electrochemical Society, 144, 81–89.
Strandberg, H., 1997, Perspectives on sculpture conservation: Modelling copper and bronze corrosion. Ph.D. dissertation, University of Gothenburg, Gothenburg, 103–104 p. (in English)
Tao, N., Anisimov, A., Duijn, E., Vos, L., Steeman, I., Keune, K., Noble, P. and Groves, R.M., 2023, Application of shearography with thermal loading for structural inspection of Rembrandt’s Night Watch. In: Optics for Arts, Architecture and Archaeology (O3A) Ⅸ; Munich. Jun 26-27; 12620.(in English)
Tomasini, E.P., Costantini, I., Landa, C.R., Guzmán, F., Pereira, M., Castro, K., Siracusano, G., Madariaga, J.M. and Maier, M.S., 2021, Identification and characterization of basic copper sulfates as mineral green pigments in Andean colonial mural paintings: Use of temperaturecontrolled stage for the study of thermal induced antlerite degradation. Journal of Raman Spectroscopy, 52(12), 2204–2217.
Yiming, J., Sciutto, G., Prati, S., Catelli, E., Galeotti, M., Porcinai, S., Mazzocchetti, L., Samorì, C., Galletti, P., Giorgini, L., Tagliavini, E. and Mazzeo, R., 2019, A new bio-based organogel for the removal of wax coating from indoor bronze surfaces. Heritage Science, 7, 1–12.
Zahner, L.W., 2020, Copper, brass and bronze surfaces: A guide to alloys, finishes, fabrication and maintenance in architecture and art, John Wiley & Sons Inc, Hoboken, 105–266.
Zhang, X., Odenvall Wallinder, I. and Leygraf, C., 2014, Mechanistic studies of corrosion product flaking on copper and copper-based alloys in marine environments. Corrosion Science, 85, 15–25.