1. 서 론
종이 관련 내절 강도 시험방법은 「KS M ISO 5626:1993 종이-내절 강도 시험」, 「KS M 7065 종이 및 판지의 MIT 시험기에 의한 내절 강도 시험방법」, 「KS M 7068 종이 및 판지의 내절 강도 시험 방법(쇼퍼법)」 등이며, 이 중 KS M 7065는 대체되고 KS M 7068은 폐지되었다. 그에 따라 한지대상 내절 강도 시험방법은 KS M ISO 5626을 기준하여 준용되어 왔다.
KS M ISO 5626 시험방법에서 시료 준비는 KS M ISO 187에 따라 조습처리를 완료하고 발촉방향(LD), 발끈방향(CD)별 최소 10매를 준비하며 시험편 폭은 15±0.1 mm를 제시하고 있다. 또한, 내절도가 10∼10000회 범위에 해당하도록 하며 기본 장력(하중)을 9.81 N으로 하되 4.91 N∼14.72 N 범위에서 조절할 것을 권장하고 있다. 내절 강도 시험에 사용하는 장비는 쇼퍼형 시험기, Lhomargy 시험기, Köhler Molin 시험기, MIT 시험기이며 주로 MIT 시험기가 사용되고 있다.
수초지의 한지는 목재 펄프지와 다르게 동일 평량의 한지 시편에서도 지합의 차이와 장섬유라는 특징으로 인해 내절도의 산포범위가 넓고 최댓값이 목재 펄프지보다 상당히 큰 경향이 나타난다. 때문에 측정과정에서 평량에 따라 내절도가 10회 미만인 경우나 10000회를 훨씬 상회하는 결과가 나타난다. 이러한 결과는 측정값의 정제나 비교, 해석에 어려움이 발생하고 측정시간이 장시간 소요된다. 따라서 수초지의 한지에 있어서도 종이-내절 강도 시험을 준용하면서 다양한 평량의 한지에 대한 기본적인 내절도 측정조건이 요구되고 있다.
한지 내절도 관련 연구사례를 살펴보면, 다른 종이에 비해 우수한 전통한지의 내절도는 원료와 첨가물 그리고 제지법의 차이에서 나온다(Jeon, 2011). 한지의 이러한 물성은 원료에 있어서 장섬유인 참 닥나무 인피섬유를 사용하기 때문이며(Jeon, 2011), 실험을 통해 한국산 백피, 한국산 흑피, 한국산 흑피 + 고지, 한국산 흑피 + 크라프트 펄프로 각각 제작된 순지와 화선지 중에서 한국산 백피의 초기 내절도가 가장 우수한 것으로 확인되기도 하였다(Park et al., 2009). 또한 첨가물에 있어서 증해액의 종류에 따라 한지의 내절도 차이가 있음을 밝히고 있으며, 제지법에 있어서 목판 건조, 열판 건조 중 목판 건조를 통한 한지의 내절도가 우수함을 보고하고 있다. 그 이유로 스테인리스판 건조 시 높은 온도로 인해 한지가 닿는 면에서 수분이 급속히 빠져나가면서 한지 내 공극이 많아져 밀도가 낮아진 원인을 제시하였다(Kim, 2021). 따라서 종이의 강도나 내절도가 밀도와 밀접한 관련이 있음을 알 수 있다(Jeong and Cho, 2013). 한지는 초지방법에 따른 섬유 배향성이 다르게 나타나기 때문에 물질 방향(LD)과 물질 수직 방향(CD)의 내절도 차이가 확연히 다르게 나타난다(Son et al., 2019). 내절도 측정방법과 결과 가공에 있어서 원지, 열화지, 산성열화지 등 시료의 상태에 따라 4.91 N, 9.81 N 하중을 달리 적용한 연구(Jeong et al., 2015; Shin, 2014)가 있었고 더 나아가 종이기록물의 내절강도를 측정하고 해당 시료에 대한 NIR 스펙트럼을 구하여 가장 최적의 검량곡선 작성과 이 검량곡선의 직선성을 검토하여 비파괴의 특성평가 모델을 도출하거나(Han et al., 2010), 내절 강도를 측정하여 강도 감소율을 비교 분석하는 연구로 이어졌다(Jeong and Cho, 2013). 그러나 내절도가 한지의 기본 물성 평가 항목이자 열화 판단의 주요 항목으로서 주목받는 것에 비해 수초지 한지에 대한 기본적인 내절도 측정 방법 및 측정조건에 대한 연구와 정립은 미흡하였다.
본 연구에서는 내절도 10∼10000회 범위에 부합하면서 측정시간을 단축하고자 하는 목적으로 하중별 내절도와 시편폭별 내절도 시험을 수행하였으며, 그 결과를 토대로 다양한 평량의 한지에 대한 기본적인 내절도 측정조건을 제안하고자 한다.
2. 연구방법
2.1. 연구대상
한지 시편은 국내산 닥나무와 황촉규근 사용을 원칙으로 하여 제조한 것으로 평량 17 g/m2, 30 g/m2, 45 g/m2에 해당하는 외발초지 한지 3종(A)과 쌍발초지 한지 3종(C), 평량 75 g/m2 복사지 1종(E) 등 총 7종을 선정하였다. 또한, 비교 확인을 위해 별도의 외발초지 한지 3종(B), 쌍발 초지 한지 3종(D)을 준비하였다(Table 1). 한지 시편 중 A, C, E 그룹은 실험 조건용으로, B, D 그룹은 도출한 측정조건에 대한 대조 확인용으로 사용하였다.
2.2. 연구 방법
종이-내절 강도 시험(KS M ISO 5626:1993)에 따라 4연식 MIT 내절도 측정기(CK-570DFT-4M, CKtrade, KOR)를 이용하여 하중별(14.72 N, 9.81 N, 4.91 N) 내절도 실험과 시편폭별(15 mm, 10 mm, 5 mm) 내절도 실험을 순차 진행하였다(Table 2). 전체시편은 평량을 확인한 후 발촉방향(LD), 발끈방향(CD)으로 구분하여 각각 24매 선정하였고 이어 하중별 시편은 폭 15 mm, 길이 150 mm로, 시편폭별 시편은 폭 5 mm, 10 mm, 15 mm, 길이 150 mm로 재단하였다. 시편은 종이재단 전문업체를 통해 재단하였다(Table 3, Figure 1A). 내절도 측정은 시편을 클램프에 고정한 후 접음각도는 좌우 135°, 분당 175회 조건으로 진행하였다(Table 2, Figure 1B). 시편명칭은 Table 1의 시료명에 Table 3의 발촉방향 LD의 앞자 L 또는 발끈방향 CD의 앞자 C를 붙여 명기하였다. Table 3에서 발촉방향 L은 주황색선 방향이고, 발끈방향 C는 발촉의 직각방향으로 굵은 회색선 방향이다. 결과값의 처리는 개별값, 평균값, 표준편차값과 함께 다섯숫자요약을 사용하였다. 다섯숫자요약은 수치형 자료를 요약할 때 사용하며 최솟값, 아래 사분위수, 중간값, 위 사분위수 최댓값을 말한다.
3. 결 과
3.1. 하중별 내절도
평량 17 g/m2 ∼45 g/m2 범위의 한지에 대하여 하중 14.72 N 조건에서는 내절도 범위(최솟값∼최댓값)가 A그룹 0∼1404회, C그룹 0∼1817회, E그룹 3∼12회로 나타났으며 10회 미만의 결과가 평량 17 g/m2의 A그룹 1종, B그룹 1종과 복사지에서 확인되었다(Table 4, Figure 2A, 2B). 하중 9.81 N 조건에서는 내절도 범위가 A그룹 0∼4021회, C그룹 40∼3011회, E그룹 5∼46회로 나타났으며 10회 미만의 결과가 평량 17 g/m2 A그룹 1종과 복사지에서 확인되었다(Table 5, Figure 2C, 2D). 하중 4.91 N 조건에서는 내절도 범위가 A그룹 141∼10636회, C그룹 1450∼9908회, E그룹 25∼694회로 나타나 모든 시편에서 내절도 기준범위 10∼10000회에 부합한 것으로 확인되었다(Table 6, Figure 2E, 2F). 특히, 하중 14.72 N 조건과 9.81 N 조건 결과에서 하중에 의한 내절도 0회의 발생 증가와 최솟값군-최댓값군으로 값이 양분된 사례로 평량 17 g/m2 시편의 표준편차가 평균보다 같거나 큰 경향이 나타났다(Table 4, Table 5). 전체적으로 평량 17 g/m2∼45 g/m2 범위의 한지대상 내절도 범위(최솟값∼최댓값)는 하중 14.72 N 조건에서 0∼1817회, 하중 9.81 N 조건에서 0∼4021회, 4.91 N 조건에서 25∼10636회로 확인되었으며, 초지 시 물질방향으로 섬유 배향이 반영되어 A그룹의 LD, C그룹의 CD가 각각 내절도가 높았다(Figure 3).
3.2. 시편폭별 내절도
하중 4.91 N 고정조건하에서 수행한 시편폭별 내절도 실험결과, 평량 17 g/m2 ∼45 g/m2 범위의 한지에 대하여 시편폭 5 mm 조건에서는 내절도 범위(최솟값∼최댓값)가 A그룹 0∼1253회, C그룹 0∼1468회, E그룹 3∼16회로 나타났으며, 10회 미만의 결과가 평량 17 g/m2의 A그룹 1종, C그룹 1종과 복사지에서 확인되었다(Table 7, Figure 4A, 4B). 시편폭 10 mm 조건에서는 내절도 범위가 A그룹 29∼3999회, C그룹 87∼4319회, E그룹 10∼134회로 나타났으며(Table 8, Figure 4C, 4D), 시편폭 15 mm 조건에서는 내절도 범위가 A그룹 141∼10636회, C그룹 1,450∼9908회, E그룹 25∼694회로 나타났다(Table 9, Figure 4E, 4F). 시편폭 15 mm, 10 mm 조건에서 내절도가 각각 25∼10636회, 10∼4319회 범위로 나타나 내절도 기준범위 10∼10000회에 부합하였다(Figure 5).
3.3. 도출 조건에 대한 내절도 및 측정시간 비교
앞서 하중별 내절도 실험결과에서 도출된 시편폭 15 mm, 하중 4.91 N 조건과 시편폭별 내절도 실험결과에서 도출된 시편폭 10 mm, 하중 4.91 N 조건을 상호 비교하였다. 두 조건 모두 내절도 기준 범위 10∼10000회에 부합하고 있으므로 내절도의 범위 축소와 측정시간 단축이라는 측면에서 비교하고자 하였다. 상호 비교에 앞서 외발한지의 LD방향과 쌍발한지의 CD방향을 기준하였다. 내절도의 경우, 시편폭 10 mm 조건이 시편폭 15 mm 조건 대비 최댓값 감소율에서는 A1L, A2L, A4L(외발한지 3종 LD)이 각각 40%, 62%, 65%로 나타났고 C1C, C3C, C5C(쌍발한지 3종 CD)가 각각 21%, 50%, 56%로 확인되었다. 또한, 평균값 감소율에서는 A1L, A2L, A4L(외발한지 3종 LD)이 각각 43%, 51%, 55%로 나타났고 C1C, C3C, C5C(쌍발한지 3종 CD)가 각각 28%, 51%, 45%로 확인되었다(Table 10). 측정시간의 경우, 시편폭 10 mm 조건이 시편폭 15 mm 조건 대비 A1L, A2L, A4L(외발한지 3종 LD)이 각각 40%, 62%, 65%로 나타났고 C1C, C3C, C5C(쌍발한지 3종 CD)가 각각 21%, 50%, 56%로 확인되었다. 외발한지 LD 기준으로 40%∼65% 단축되었고, 쌍발한지 CD기준으로 21%∼56% 단축되었다. 즉, 시편폭 15 mm로 측정시간 60분 소요에서 시편폭 10 mm로 약 25분 소요되었고, 시편 폭 15 mm로 측정시간 30분에서 시편폭 10 mm로 약 17분 소요되었다(Table 11).
3.4. 내절도 감소 기울기
하중별 내절도 실험결과와 시편폭별 내절도 실험결과의 평균값을 기준하여 조건별 감소 추세선을 작성하였으며 선형 추세선으로 비교하였다. 먼저, 하중별 내절도 추세선과 시편폭별 내절도 추세선의 감소 기울기가 유사한 것으로 나타났으며 하중별 내절도 추세선의 결정계수(R2)보다 시편폭별 내절도 추세선의 결정계수(R2)가 높아 시편폭별 내절도 추세선이 데이터에 거의 일치하는 것으로 확인되었다. 하중별 내절도 추세선 감소 기울기는 A1L – 1751, A2L –2620, A4L –2376, C1C –1347, C3C –1900, C5C –2235, E1L –175로 나타났고 시편폭별 내절도 추세선 감소기울기는 A1L –1741, A2L –2603, A4L –2472, C1C – 1276, C3C –1978, C5C –2164, E1L –174로 확인되었다. 이러한 결과는 4.91 N∼14.72 N 범위 내 평량 17 g/m2, 30 g/m2, 45 g/m2 한지의 내절도를 예측하거나 시편폭 15 mm ∼5 mm 범위 내 평량 17 g/m2, 30 g/m2, 45 g/m2 한지의 내절도 예측에 대한 기초자료로 활용될 수 있으며 A그룹의 CD방향, C그룹의 LD방향에서도 감소 기울기를 참고한 내절도 예측도 가능하다. 특히, 시편폭을 조정하는 측정조건이 하중을 조정하는 측정조건보다 내절도에 있어 조건별 예측도구로서 유리한 것으로 판단된다(Figure 6).
4. 고 찰
4.1. 한지 내절도 측정조건
추가 측정한 외발초지 한지 3종, 쌍발초지 한지 3종에 대한 평량 17 g/m2, 30 g/m2, 45 g/m2에서의 내절도를 본 연구결과와 비교했을 때 하중 4.91 N 조건, 시편폭 15 mm 시편의 내절도가 35∼17723회 범위로 나타나 내절도 기본범위 10∼10000회를 크게 상회하며 시편 1개의 측정시간이 최대 100분이 소요되었다. 따라서, 하중 4.91 N, 시편 폭 15 mm 조건을 기본 조건으로 선정하기 보다는 내절도 기본범위 10∼10000회 부합과 측정시간의 단축을 고려하였을 때 하중 4.91 N, 시편폭 10 mm 조건의 내절도 측정 방법이 적합한 것으로 판단된다. 다만, 기존 시편폭 15 mm를 유지하면서 4.91 N 초과∼9.81 N 미만 내에서 적정 하중을 찾는 방법도 가능할 것으로 본다(Figure 7).
본 연구에서는 열화시편에 대한 내절도를 검토하고 감안한 상태에서 원지 중심으로 내절도 연구를 수행하였으나 내절도 측정방법에 있어 원지, 열화지, 산성열화지 등 시료의 상태에 따라 4.91 N, 9.81 N 하중을 달리 적용한 일부 연구(Jeong et al., 2015; Shin, 2014) 사례를 고려할 때 모든 조건을 충족하였다고는 단정 지을 수 없다. 따라서 제안한 하중 조건과 시편폭 조건의 측정조건으로 원지를 포함한 다양한 열화 방식과 열화 상태의 한지를 대상으로 내절도를 측정하고 수집된 결과가 기준 범위에 부합하며 물성 변화 변별이 가능한지 지속적인 연구가 필요하다. 그에 따라 측정조건의 개선, 수정 또는 부가사항 신설 등으로 보완되리라 기대한다.
5. 결 론
1. 평량 17 g/m2∼45 g/m2 범위의 한지에 대하여 하중 4.91 N 조건에서는 내절도 범위가 A그룹 141∼10636회, C그룹 1450∼9908회, E그룹 25∼694회로 나타나 모든 시편에서 내절도 기준범위 10∼10000회에 부합한 것으로 확인되었다.
2. 평량 17 g/m2∼45 g/m2 범위의 한지에 대하여 시편폭 15 mm, 10 mm 조건에서 내절도가 각각 25∼10636회, 10∼4319회 범위로 나타나 내절도 기준범위 10∼10000회에 부합하였다.
3. 내절도 기준 범위 10∼10000회에 부합하는 시편폭 15 mm, 하중 4.91 N 조건과 시편폭 10 mm, 하중 4.91 N 조건에 대한 내절도의 범위 축소와 측정시간 단축 비교에서 시편폭 10 mm 조건이 시편폭 15 mm 조건 대비 내절도 최댓값 감소율과 측정시간 단축율이 외발한지 LD 기준 10%∼65%로 쌍발한지 CD 기준 21%∼56%로 확인되었다. 즉, 측정시간이 시편폭 15 mm로 60분 소요, 30분 소요에서 시편폭 10 mm로 25분 소요, 17분 소요로 각각 단축되었다.
4. 하중별 내절도 결과와 시편폭별 내절도 결과의 평균값을 기준한 선형 추세선 비교에서 하중별 내절도 추세선과 시편폭별 내절도 추세선의 감소기울기가 유사한 것으로 나타났으며 하중별 내절도 추세선의 결정계수보다 시편폭별 내절도 추세선의 결정계수(R2)가 높아 시편폭별 내절도 추세선이 데이터에 거의 일치하는 것으로 확인되었다. 추세선을 통해 평량 17 g/m2, 30 g/m2, 45 g/m2 한지에 대하여 4.91 N∼14.72 N 범위 또는 시편폭 15 mm∼5 mm 범위 내의 내절도를 예측하는데 활용가능하다. 특히, 시편폭을 조정하는 측정조건이 하중을 조정하는 측정조건보다 내절도에 있어 조건별 예측도구로서 유리한 것으로 판단되었다.
5. 하중 4.91 N 조건, 시편폭 15 mm으로 측정한 비교군 시편의 내절도가 35∼17723회 범위로 나타나 내절도 기본범위 10∼10000회를 크게 상회하며 시편 1개의 측정시간이 최대 100분이 소요되었다. 따라서, 하중 4.91 N, 시편 폭 15 mm 조건을 기본 조건으로 선정하기보다는 내절도 기본범위 10∼10000회 부합과 측정시간의 단축을 고려하였을 때 하중 4.91 N, 시편폭 10 mm 조건의 내절도 측정 방법이 적합한 것으로 판단된다. 다만, 기존 시편폭 15 mm를 유지하면서 4.91 N 초과∼9.81 N 미만 내에서 적정 하중을 찾는 방법도 가능할 것으로 본다.